\(\int \frac {(e x)^{3/2}}{(a-b x^2) \sqrt {c-d x^2}} \, dx\) [882]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 261 \[ \int \frac {(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=-\frac {2 \sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}} \]

[Out]

-2*c^(1/4)*e^(3/2)*EllipticF(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),I)*(1-d*x^2/c)^(1/2)/b/d^(1/4)/(-d*x^2+c)^(1/
2)+c^(1/4)*e^(3/2)*EllipticPi(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),-b^(1/2)*c^(1/2)/a^(1/2)/d^(1/2),I)*(1-d*x^2
/c)^(1/2)/b/d^(1/4)/(-d*x^2+c)^(1/2)+c^(1/4)*e^(3/2)*EllipticPi(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),b^(1/2)*c^
(1/2)/a^(1/2)/d^(1/2),I)*(1-d*x^2/c)^(1/2)/b/d^(1/4)/(-d*x^2+c)^(1/2)

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {477, 494, 230, 227, 418, 1233, 1232} \[ \int \frac {(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\frac {\sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}}-\frac {2 \sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}} \]

[In]

Int[(e*x)^(3/2)/((a - b*x^2)*Sqrt[c - d*x^2]),x]

[Out]

(-2*c^(1/4)*e^(3/2)*Sqrt[1 - (d*x^2)/c]*EllipticF[ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(b*d^(1/
4)*Sqrt[c - d*x^2]) + (c^(1/4)*e^(3/2)*Sqrt[1 - (d*x^2)/c]*EllipticPi[-((Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d])),
ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(b*d^(1/4)*Sqrt[c - d*x^2]) + (c^(1/4)*e^(3/2)*Sqrt[1 - (d
*x^2)/c]*EllipticPi[(Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d]), ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(
b*d^(1/4)*Sqrt[c - d*x^2])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 230

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + b*(x^4/a)]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + b*(x^4/
a)], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-d/c, 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a,
 b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 477

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Dist[k/e, Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/e^n))^p*(c + d*(x^(k*n)/e^n))^q, x], x, (e*
x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Intege
rQ[p]

Rule 494

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[a*(e^n/b), Int[(e*x)^(m - n)*((c + d*x^n)^q/(a + b*x^n)), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 1233

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]
, Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a)]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \text {Subst}\left (\int \frac {x^4}{\left (a-\frac {b x^4}{e^2}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{e} \\ & = -\frac {(2 e) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{b}+\frac {(2 a e) \text {Subst}\left (\int \frac {1}{\left (a-\frac {b x^4}{e^2}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{b} \\ & = \frac {e \text {Subst}\left (\int \frac {1}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{b}+\frac {e \text {Subst}\left (\int \frac {1}{\left (1+\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{b}-\frac {\left (2 e \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{b \sqrt {c-d x^2}} \\ & = -\frac {2 \sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}}+\frac {\left (e \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{b \sqrt {c-d x^2}}+\frac {\left (e \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{b \sqrt {c-d x^2}} \\ & = -\frac {2 \sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} \Pi \left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} e^{3/2} \sqrt {1-\frac {d x^2}{c}} \Pi \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{b \sqrt [4]{d} \sqrt {c-d x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 11.06 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.27 \[ \int \frac {(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\frac {2 x (e x)^{3/2} \sqrt {\frac {c-d x^2}{c}} \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\frac {d x^2}{c},\frac {b x^2}{a}\right )}{5 a \sqrt {c-d x^2}} \]

[In]

Integrate[(e*x)^(3/2)/((a - b*x^2)*Sqrt[c - d*x^2]),x]

[Out]

(2*x*(e*x)^(3/2)*Sqrt[(c - d*x^2)/c]*AppellF1[5/4, 1/2, 1, 9/4, (d*x^2)/c, (b*x^2)/a])/(5*a*Sqrt[c - d*x^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(405\) vs. \(2(191)=382\).

Time = 3.36 (sec) , antiderivative size = 406, normalized size of antiderivative = 1.56

method result size
default \(\frac {\left (\Pi \left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {c d}\, b}{\sqrt {c d}\, b +\sqrt {a b}\, d}, \frac {\sqrt {2}}{2}\right ) a b \sqrt {c d}-\Pi \left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {c d}\, b}{\sqrt {c d}\, b +\sqrt {a b}\, d}, \frac {\sqrt {2}}{2}\right ) a d \sqrt {a b}-\Pi \left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {c d}\, b}{\sqrt {c d}\, b -\sqrt {a b}\, d}, \frac {\sqrt {2}}{2}\right ) a b \sqrt {c d}-\Pi \left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {c d}\, b}{\sqrt {c d}\, b -\sqrt {a b}\, d}, \frac {\sqrt {2}}{2}\right ) a d \sqrt {a b}+2 F\left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {2}}{2}\right ) a d \sqrt {a b}-2 F\left (\sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}, \frac {\sqrt {2}}{2}\right ) b c \sqrt {a b}\right ) \sqrt {-\frac {d x}{\sqrt {c d}}}\, \sqrt {\frac {-d x +\sqrt {c d}}{\sqrt {c d}}}\, \sqrt {\frac {d x +\sqrt {c d}}{\sqrt {c d}}}\, \sqrt {c d}\, \sqrt {2}\, e \sqrt {e x}}{2 \sqrt {-d \,x^{2}+c}\, x \left (\sqrt {c d}\, b -\sqrt {a b}\, d \right ) \left (\sqrt {c d}\, b +\sqrt {a b}\, d \right ) \sqrt {a b}}\) \(406\)
elliptic \(\frac {\sqrt {e x}\, \sqrt {\left (-d \,x^{2}+c \right ) e x}\, \left (-\frac {e^{2} \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, \frac {\sqrt {2}}{2}\right )}{b d \sqrt {-d e \,x^{3}+c e x}}-\frac {a \,e^{2} \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \Pi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right )}{2 b \sqrt {a b}\, d \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}+\frac {a \,e^{2} \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \Pi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right )}{2 b \sqrt {a b}\, d \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}\right )}{e x \sqrt {-d \,x^{2}+c}}\) \(435\)

[In]

int((e*x)^(3/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+(a*b)^(1/2)*d),1/2*2^(1/2))
*a*b*(c*d)^(1/2)-EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+(a*b)^(1/2)*d),
1/2*2^(1/2))*a*d*(a*b)^(1/2)-EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b-(a*
b)^(1/2)*d),1/2*2^(1/2))*a*b*(c*d)^(1/2)-EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)
^(1/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2))*a*d*(a*b)^(1/2)+2*EllipticF(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),1/2*2^(
1/2))*a*d*(a*b)^(1/2)-2*EllipticF(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),1/2*2^(1/2))*b*c*(a*b)^(1/2))*(-d*x/(c
*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*2^(1
/2)*e*(e*x)^(1/2)/(-d*x^2+c)^(1/2)/x/((c*d)^(1/2)*b-(a*b)^(1/2)*d)/((c*d)^(1/2)*b+(a*b)^(1/2)*d)/(a*b)^(1/2)

Fricas [F(-1)]

Timed out. \[ \int \frac {(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\text {Timed out} \]

[In]

integrate((e*x)^(3/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=- \int \frac {\left (e x\right )^{\frac {3}{2}}}{- a \sqrt {c - d x^{2}} + b x^{2} \sqrt {c - d x^{2}}}\, dx \]

[In]

integrate((e*x)**(3/2)/(-b*x**2+a)/(-d*x**2+c)**(1/2),x)

[Out]

-Integral((e*x)**(3/2)/(-a*sqrt(c - d*x**2) + b*x**2*sqrt(c - d*x**2)), x)

Maxima [F]

\[ \int \frac {(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\int { -\frac {\left (e x\right )^{\frac {3}{2}}}{{\left (b x^{2} - a\right )} \sqrt {-d x^{2} + c}} \,d x } \]

[In]

integrate((e*x)^(3/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

-integrate((e*x)^(3/2)/((b*x^2 - a)*sqrt(-d*x^2 + c)), x)

Giac [F]

\[ \int \frac {(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\int { -\frac {\left (e x\right )^{\frac {3}{2}}}{{\left (b x^{2} - a\right )} \sqrt {-d x^{2} + c}} \,d x } \]

[In]

integrate((e*x)^(3/2)/(-b*x^2+a)/(-d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(-(e*x)^(3/2)/((b*x^2 - a)*sqrt(-d*x^2 + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^{3/2}}{\left (a-b x^2\right ) \sqrt {c-d x^2}} \, dx=\int \frac {{\left (e\,x\right )}^{3/2}}{\left (a-b\,x^2\right )\,\sqrt {c-d\,x^2}} \,d x \]

[In]

int((e*x)^(3/2)/((a - b*x^2)*(c - d*x^2)^(1/2)),x)

[Out]

int((e*x)^(3/2)/((a - b*x^2)*(c - d*x^2)^(1/2)), x)